
OPTIMIZATION OF AUTONOMOUS SWARM

Will Sharpless
UC Berkeley
October 2019

Contents

0.1 Deliverables . 2
0.2 Introduction . 3
0.3 Model and Methods . 3
0.4 Results and Discussion . 7
0.5 Conclusion . 11
0.6 Appendix . 11

1

Will Sharpless, E150 P2

0.1 Deliverables

I wrote the following technical report in a format that I could publish in my portfolio so
I integrated the required deliverables throughout the text. The following references link
to the start of the sentence where I answer the question.

• Introduction 1: 0.2

• Introduction 2: 0.2

• Introduction 3: 0.2

• Background and Theory 1: 0.3

• Background and Theory 2: 0.3

• Background and Theory 3: 0.3

• Background and Theory 4: 0.3

• Background and Theory 5: 0.3

• Background and Theory 6: 0.3

• Procedure and Methods 1: 0.3

• Procedure and Methods 2: 0.3

• Procedure and Methods 3: 0.3

• Procedure and Methods 4: 0.3

• Procedure and Methods 5: 0.3

• Procedure and Methods 6: 0.3

• Results and Discussion 1: 1

• Results and Discussion 2: 2a 2b 2c

• Results and Discussion 3: 1

• Results and Discussion 4: 0.4

• Results and Discussion 5: 3

• Conclusion 1 0.5

• Appendix 1 0.6

2

Will Sharpless, E150 P2

0.2 Introduction

In the modern age, small vehicles are cheap and powerful. With lightweight and fast
microprocessors, units may be operated via community control protocols and deployed
autonomously. In the following project, I sought to find optimal design variables for
autonomous control of a swarm of unmanned aerial vehicles (drones) through genetic op-
timization of a simulated model. The desired function of the swarm was to rapidly map
desired targets while avoiding obstacles and crashing. First, I outline the methods includ-
ing the model, simulation and genetic algorithm in detail, second, I discuss the results,
and finally, I conclude with a brief summary and takeaways. The work demonstrates a
scheme for discovering nontrivial optimization parameters and expediting the industrial
engineering process.

0.3 Model and Methods

We model the drones in a fixed Cartesian base with the following generic equations for
position, velocity and acceleration,

r = r1e1 + r2e2 + r3e3

v = ṙ = ṙ1e1 + ṙ2e2 + ṙ3e3

a = r̈ = r̈1e1 + r̈2e2 + r̈3e3

We idealize the masses of the drones (and targets and obstacles) as points because their
size, probably less than an eighth of a cubic meter, is irrelevant in the context of the
arena which is nearly 11e9 cubic meters (page 6). It is unlikely that the perimeters of the
objects would collide while their centers did not at this scale and to be safe we include a
crash radius of 5 meters.

The drones are subjected to forces of their own propulsion and drag, but immune to
the effects of gravity, lift and buoyancy. We assume the drones are light, but we exclude
these forces because they are orthogonal to drag and would require additional parameters
in the GA to control a separate dimension of motion and possibly, hinder the ability of
the genetic algorithm within the context of 100 generations.

mi ai =Ψtot
i

3

Will Sharpless, E150 P2

Ψtot
i︸︷︷︸

net force

= F p,i︸︷︷︸
prop. force

+ F d ,i︸︷︷︸
drag force

We define the propulsion and drag forces as the following (note the norm is the euclidean
distance),

F p,i = Fp,i n∗
i

F d ,i =
1

2
ρaCd ,i Ai ‖v a −v i‖ (v a −v i)

Within the simulation the agents have a fixed propulsion Fp,i and therefore, reach and
maintain flight at the terminal velocity 36.14 m/s (note this has subtle but important
implications for behavior),

vi =
√

2Fp,i

ρaCd ,i Ai
= 36.14 m/s

The propulsion component of each agent is computed as the normalized sum of three
types of interactions with itself and all other objects, member-target, member-member
and member-obstacle, weighted with priority parameters Wmt , Wmm, and Wmo that are
optimized by the GA.

n∗
i = N tot

i∥∥N tot
i

∥∥
N tot

i =Wmt N mt
i +Wmo N mo

i +Wmm N mm
i

Control principally manifests through the interaction vector n̂mt
i→ j which for member

in position r i and target position T j is given by the unit vector normal nmt
i→ j weighted

with the difference of two decreasing exponentials; one term to allow attraction and the
other to allow repulsion each with optimized parameters which control the weight and
spatial decay rates of the attraction and repulsion. We maintain that the parameters
affecting the rates of decay are positive, hence that they amount to rates of decay and not
growth as that would undesirably make agents more "aware" of objects at a distance than
the objects nearer promoting crashes and apathy for easily mappable targets. Note,that
while other control framework or functions could be used, decreasing exponentials are
well suited for the problem as they are smooth, decrease exponentially, and we expect
them to work for weights within 0 to 1 despite that they may result in sub-optimal scores.

4

Will Sharpless, E150 P2

nmt
i→ j =

T j − r i∥∥T j − r i
∥∥

n̂mt
i→ j = (wt1e−a1d mt

i j︸ ︷︷ ︸
attraction

−wt2e−a2d mt
i j︸ ︷︷ ︸

repulsion

)nmt
i→ j

The total member-target interaction vector for member i , N mt
i is the sum of all

interaction vectors for member i and targets j ∈ (1, NT).

N mt
i =

Nt∑
j=1

n̂mt
i→ j

The interaction form is similar for the interactions between member i and obstacles
j ∈ (1, No) in positions O j ,

nmo
i→ j =

O j − r i∥∥O j − r i
∥∥

n̂mo
i→ j =

(
wo1e−b1d mo

i j −wo2e−b2d mo
i j

)
nmo

i→ j

N mo
i =

No∑
j=1

n̂mo
i→ j

and also for the interactions between member i and members j ∈ (1, Nm),

nmm
i→ j =

r j − r i∥∥r j − r i
∥∥

n̂mm
i→ j =

(
wm1e−c1d mm

i j −wm2e−c2d mm
i j

)
nmm

i→ j

N mm
i =

Nm∑
j=1, j 6=i

n̂mm
i→ j

After each of the interactions have been computed and thus, the forces on each drone,
we may compute the drones change in velocity and position for t +∆t . We solve the
simulation with the following Forward Euler scheme. The Forward Euler method is
well suited for the problem because it has a low computation speed while retaining an
accuracy of O(∆t 2) = O(0.04). However, if one increased the step size, we might expect
the simulation computation might speed up because of less time step calculations but it
would diverge from reality rapidly because of the higher O(∆t 2).

v i (t +∆t)
.= v i (t)+ai (t)∆t = v i (t)+Ψtot

i (t)
∆t

mi

5

Will Sharpless, E150 P2

r i (t +∆t)
.= r i (t)+v i (t)∆t

The swarm is composed of 20 drones and it has 60 seconds to map 100 targets whilst
dodging 25 obstacles. Targets and obstacles are initialized randomly in the domain

(|x| ≤ 100m), (|y | ≤ 100m), (|z| ≤ 10m)

while drones are initialized within the boundary,

(−150m ≤ x ≤−110m), (|y | ≤ 10m), (|z| ≤ 10m)

I initialized the drones in this region in three parallel yz-planes with 5 drones in a plane
where one drone is in the center and one on each corner of the plane; this organization
looks like three X’s separated by 20 meters each. I chose this formation as it had the
greatest minimum distance (I could think of) with centers 14m from each corner and all
other points separated by 20m. A drone will "crash" if it leaves the defined boundary

(|x| ≤ 150m), (|y | ≤ 150m), (|z| ≤ 60m)

Each drone must be within 5m of the target to map it and if a drone and an obstacle or
another drone come within 2m, they will crash. Within my simulation, I maintain activ-
ity matricies (initialized at ones(Nm,1)) to track wether each agent has been destroyed
and which targets have been mapped along with clauses which cause an interaction cal-
culation loop to skip over a computation if the activity of the other object is zero; with
running sums for the overall interaction component, this method neglects analysis and
incorporation of interaction with inactive members. Note, I chose to make each position
matrix 3D where the third dimension represents steps in time; while this costs time to
store t times as much data (still runs 10 generations/min), it allows the user to plot
the flights of the drones for a better understanding of the flight mechanics and behavior
(Figure 4)

Each design variable Λ is the following string of undetermined variables that govern
the swarm’s behavior (random guesses ∈ (0,2) to begin),

Λi def= {Wmt ,Wmo ,Wmm , wt1, wt2, wo1, wo2, wm1, wm2, a1, a2,b1,b2,c1,c2}i

After each simulation we score the performance of the design variable Λi with the
cost function Π (with fixed/non-optimized weights w1, w2 and w3) and metrics M∗, T∗,

6

Will Sharpless, E150 P2

and L∗,
Π= w1M∗+w2T ∗+w3L∗

M∗ = (Unmapped targets)

(Total targets)
,T ∗ = (Used time)

(Total time)
,L∗ = (Crashed agents)

(Total agents)

w1 = 70, w2 = 10, w3 = 20

The genetic algorithm begins with random guesses for λ then it scores, sorts and
removes all but 6 top scoring parents which are bred to make 6 new children (pairwise
with random portions of each parent). With the parents, children and new random
guesses, the algorithm iterates and begins a new generation. This optimization method
is better suited than a gradient-based method not only because of its speed but because
the objective function is discontinuous and undifferentiable as it is a function of discrete
amounts of events (targets mapped, agents crashing) and thus, will lead Newton’s method
to error at many points.

0.4 Results and Discussion

In 100 generations, the Genetic Algorithm is able to minimize Π from 90 to 6.27 absolute
units in which 0 agents crash and all targets are hit within 37.4 seconds. The convergence
plot demonstrates a history of the population, parents and best λ’s that lead to the
aforementioned minimization (Figure 1).

Figure 1: Convergence of Π Final score of Pi is 6.27

We may note from the convergence, that the final score was approximately reached in

7

Will Sharpless, E150 P2

30 generations with the following 70 resulting in less than a 1 unit improvement. Once
confident of the GA’s minimum region, one might in future designs change the random
guesses to center around the λk of the best design in order to further minimize the score.

We may gain further understanding from the convergence of M*, L* and T* that
correspond the aforementioned minimization that achieved a Π of 6.9 (Figures 2a,2b,2c).
The plots do not follow a strict minimizing landscape and are not always in sync; mini-
mization of the overall Pi often comes in pushes on one of the three fonts independently.
It is clear from the relative size of w1 why M star minimizes first and most rapidly, but
it is interesting that parents and best score nearly always track together (I originally
interpreted this as a mistake in the code but have verified it); perhaps this is due to the
low resolution of score changes relative to changes in design variables.

(a) Final score of M* is 0 (b) Final score of T* is 0.65

(c) Final score of L* is 0

Figure 2: Convergence of M*, T* and L*

The top four scoring lambda are nearly identical with ranges of difference no greater

8

Will Sharpless, E150 P2

DESIGN λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8

1 0.3227 0.2093 1.3475 0.9781 1.5450 1.1611 0.8536 1.5942
2 0.3227 0.2094 1.3472 0.9780 1.5482 1.1617 0.8540 1.5940
3 0.3227 0.2093 1.3472 0.9781 1.5444 1.1611 0.8545 1.5940
4 0.3227 0.2092 1.3476 0.9781 1.5426 1.1607 0.8541 1.5943

λ9 λ10 λ11 λ12 λ13 λ14 λ15 Π

1 1.2656 0.0745 1.4512 1.0933 0.5194 0.5762 0.9197 6.2667
2 1.2650 0.0745 1.4602 1.0933 0.5194 0.5763 0.9198 6.3000
3 1.2659 0.0745 1.4517 1.0933 0.5194 0.5764 0.9197 6.3667
4 1.2653 0.0745 1.4513 1.0933 0.5194 0.5763 0.9197 6.4667

Table 1: Top four scoring Λ design strings

than 0.01 (Table 1); this suggests that all design vectors converged to the same minimum
region of Π. We might infer from their similarity that λ’s 1, 10, 12, and 13, which
correspond to Wmt ,a1,b1 and b2 respectively, are most important to the minimal score.
This makes sense for a1 and b2 as they are the parameters which control decay rate
of attraction to targets (nearly zero meaning it only weakly decays) and decay rate of
repulsion to other drones. The consistency of b1, decay of attraction to obstacles, is a
non-obvious result: while it is a significant value, the algorithms inability to raise the
value might be an artifact of the density of the obstacles and targets such that too strong
a repulsion from objects would also lead to repulsion from targets. The consistently low
target priority weight Wmt , is a bizarre result that suggests that the drones don’t need to
prioritize movement based on interactions towards targets, or if we notice Wmo/λ2, nor
obstacles, rather, interactions with other members constitute the majority of movement
(high Wmm/λ3). One of the most interesting results is the nearly consistent of a low
c1/λ14, the decay rate of attraction to other drones: the weak decay value coupled with
the strong weight wm1/λ8 implies the swarm gains a benefit when it sticks together, and
that degree is strictly defined such that any stronger and they crash into one another and
any less and they lose the synergistic power. The latter two results elucidate the uncanny
ability of swarm and how like a multi-cellular organism, the social cooperation of units
results in a "hive mind" processor which has greater sensing range, higher resolution and
grander power than any individual unit.

Finally, snapshots of the full simulation that results in Π = 6.27 may be found below.
In the subtitle one can find the time, targets mapped and agents crashed. Each drone is a
small, different colored, ring while objects are yellow circles and targets are green circles,
which receive a blue cross once they have been mapped. The viewing domain contains

9

Will Sharpless, E150 P2

all targets and obstacles but does not contain the entire crash range in order to see more
finely the behavior of the drones. Also, note the viewing domain rotates through the
duration of the gif to better demonstrate the action.

Figure 3: Simulation of Best Lambda The swarm requires 39 seconds to map 100
targets without crashing (Π= 6.27)

10

Will Sharpless, E150 P2

0.5 Conclusion

In summary, a Genetic Algorithm is well suited for the optimization of drone swarms;
within 100 generations, the GA produced a solution that was greater than 10x better
than random, and additionally, demonstrated nontrivial behaviors and mechanics of flight
control like the need for swarm cohesion (). From the simulation, we can gleam the
parameters which are meaningless and valuable, and direction for augmenting future
designs with other control laws. Above all the method costed only a couple weeks worth
of time and little to no physical expenses while simultaneously saving months worth of
costs in building experimental methods.

0.6 Appendix

Figure 4: Supplemental Figure: Overhead paths of drones throughout simulation.
It is possible to observe subtle behaviors like orbiting (upper left) from these plots

11

	Deliverables
	Introduction
	Model and Methods
	Results and Discussion
	Conclusion
	Appendix

