
 
 

Microbiome states have been correlated with health and disease across biology. Specific relative 
abundances of microbes can influence phenotypes such as obesity, autoimmunity and cognition in 
humans1,2,3 as well as pathogen resistance, drought resilience and bountiful yield in agriculture4. With the 
acceleration of microbial community research, the field has produced accurate models for predicting the 
trajectory of given consortia5,6. The question of driving the system toward a favorable diversity for the 
aforementioned phenotypes, however, remains open. While strategies for microbiome modulation exist 
(e.g. probiotics and antibiotics) these tools are blunt at best and can harm7. The tools themselves are not 
flawed, rather, the complexity of microbial communities demands sophisticated alteration programs; effects 
cascade in indirect and cyclic paths, yielding nonlinear behavior sensitive to randomness. This complexity 
bars microbiome control, obstructing research from application in medicine and industry. 

There is headway on this topic: in the past year, researchers have drawn from control literature to 
propose a method for identifying a minimal set of species to drive the community with a Model Predictive 
Controller (MPC) toward a desired microbiome state8. However, I hypothesize that this control framework 
may be limited in practice because of the dynamic and stochastic nature of microbial interactions and 
microbiomes respectively, which hinder the accuracy of the generalized Lotka-Volterra model (gLV), the 
best-known model of microbiomes. My senior thesis demonstrates the first issue that microbial interactions, 
which are invoked as constants in the models, are functions of their molecular environment, and, thus, the 
overall community dynamics are as well. Additionally, researchers have shown multiple cases of the 
stochastic nature of microbiomes9. Finally, in communities with many members, parameter inference is a 
nonconvex optimization problem for which solvers may produce different interactions that predict the same 
dynamics with similar scores6. Therefore, the application of the published control architecture might fail in 
the transition from microbiome research in test tubes, where parameterization occurs in defined and fixed 
molecular environments, to live settings like the intestine or rhizosphere. To overcome this problem, I 
propose two extensions of the gLV-MPC framework8 that utilize Reinforcement Learning (RL) to 
improve the performance of driving a microbiome to a given state. MPC’s that utilize RL, the branch 
of artificial intelligence (AI) concerned with optimization of policies to achieve desired states for given 
actions, lead in myriad applications including self-driving vehicles, autonomous portfolio management, and 
robotic manipulation by making controllers robust to dynamics absent from the models10. If RL proved to 
make microbiome control robust in noisy, biological settings, a bridge would exist between existing lab 
microbiome research to medical, agricultural and industrial applications. 

Underlying all control framework is the gLV model that follows as such8, 

ẋ(t) = 𝐷𝑖𝑎𝑔(x(t))[r	 + 	Ax(t)] 	+ 𝐷𝑖𝑎𝑔(x(t))Bu(t) 

where x(t) is a vector of species populations at time t, r is a vector of their innate growth rates, A is the 
matrix of interaction coefficients between species of x, u is the vector of control inputs (transplants, 
probiotics, bactericides) and B is the sensitivity matrix of species’ to certain inputs. I propose that the 
dynamics fluctuate with the non-constant growth rates, r, interaction network, A, and probiotic/antibiotic 
sensitivities, B, and, thus, our controller should be flexible to their non-constant nature. 

As devised and demonstrated in silico8, a linear MPC with quadratic cost function J succeeds in 
overcoming the nonlinearities of the gLV to drive the system to desired equilibria, 
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where X6! is a series of predicted states from current step 𝑘 that will occur by taking the control input 
sequence U", Q is a positive semidefinite matrix penalizing deviations of model-predicted states x;(t#)	from 
desired trajectory xd, and 𝑆 is a positive semidefinite matrix penalizing the magnitude of control inputs. 
The MPC law is to take the input u∗ that is the first in the series of inputs U"	that minimizes J subject to the 
linearized dynamics of ẋ(t). Note that Q and S are design parameters that decide which species the controller 
should prioritize by giving varying weights to species deviations and species inputs respectively. 



 
 

Therefore, we have two avenues by which our controller can learn to improve its performance: 
through the modeling space by learning the parameters that best predict the system at hand or through the 
action space by learning the design parameters that control which species to prioritize in control. The first 
attacks the model uncertainty and assumes that we might ascertain parameters that accurately model the 
system, while the second ignores the gLV altogether and improves the MPC via experiential learning. With 
respect to RL, we can translate the problem by considering J to be the value function for state x(t) and the 
policy as the rule of taking the action u∗	which minimizes the cost J 11. With regard to the two avenues of 
learning, I propose two reward functions for scoring our policies, in a Policy Search based approach11, 
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After performance, R(,*,+ would penalize the deviations of the actual system changes from the model 
predicted changes with r, A, and	B for each previous step, and R0,1 would penalize the deviations of the 
state that the controller with Q and	S	caused and the desired trajectory. The slow pace of microbial systems 
allows for ‘active’ learning, improving between each input. Particularly, the slow dynamics allow for more 
computationally expensive optimization such as with Deep Neural Networks (DNN) that prove best with 
nonlinear, nonconvex rewards10. We can, thus, pair the proposed reward functions and MPC’s with DNN 
optimization to learn the best methods for driving a microbial system actively, perhaps in the context of a 
sick patient. The schemes are also amenable to traditional training over several episodes of system 
exploration which might occur in mice or voluntary clinic trials preceding at-risk system usage. 

The hypothesis of my work is that the RL-enhanced algorithms will succeed beyond the simple 
environments for which complete and accurate parameterizations have been garnered, and thus, I propose 
to validate my experiments in wild-type mice with disease-state microbiomes due to antibiotic-caused 
Clostridium difficile infections6. This approach is built on the published parameters of several common 
intestinal microorganisms in mice5, 6 which form a partial view of a network that might exist in any wild 
type microbiome with some known and some unknown species. The two RL-controllers will require a 
period of training which would occur by driving several mice from a disease state to a defined healthy 
state6. I will investigate what duration of training is necessary and how frequently policies need to be 
updated to see performance converge. We can quantify success of the experiment by the performance of 
the RL-augmented controller compared with the standard MPC and an undisturbed control in a population 
of mice not used in controller training. The performance would be evaluated through the percent success of 
driving the microbiome in the experimental population given similar origin and diversities.  

The success of an RL-based microbiome controller would yield diverse benefits, primarily by 
making a large body of academic microbiome research useable in medicine, agriculture, and industry. 
Additionally, as an interdisciplinary project, it would further crosstalk between bioengineering, AI and 
control theory: the same scheme here has been proposed for transcription circuits and cancer therapy8 and 
the RL extension might prove powerful in those settings for similar reasons. If I were accepted to a PhD at 
my current university, I would apply for the Catalyst Program12 for industry partnership and translate the 
proposed algorithm into a medical software for dictating treatments. Despite the complexity, the project 
still requires simple tasks such as bacterial coculture, sample processing, and coding for data analysis that 
provide opportunities for students to participate and learn the advanced topics. If I were at my current 
university, I would connect with the Empowering Leadership Alliance13 and SMASH14 minority outreach 
programs to offer my project as a platform to teach basic wet lab techniques and coding in summer sessions. 
This would also be a great way to find a mentee to assist me on the project. These endeavors are crucial 
because they provide access for underrepresented students to learn bioengineering, math and AI and pursue 
research in general, necessary for social equality and the most ethical and cunning science of the future. 
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