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SPUR Proposal: Environmental Control of Microbiomes 
 
Research Statement 
 
Microbiome states have been correlated with health and disease across biological kingdoms: 
unique organizations of microbes can influence obesity, brain diseases and behavior in humans 
[1, 2, 3] and pathogen resistance, drought resilience and bountiful yield in agriculture [4]. I 
propose to interrogate how the interactions of a library of agricultural microorganisms will 
change in regard to resource scarcity to illustrate how the state and stability of the root 
microbiome might fluctuate in these contexts. This would be a subproject within Professor Adam 
Arkin’s mission to design an optimal microbiome for rice plant growth, and would demonstrate 
which organisms are best suited in a variety of contexts. I will use a droplet-based culture 
method to quantify the pairwise interactions of our 150 members and will publicize the 
interaction parameters in an online database afterward for other microbiome researchers. 
Additionally, I will incorporate dynamic interactions within the theoretical control framework 
proposed by the Liu group [5] to illustrate how to minimally control a microbiome. In general, 
the work would shed light on the behavior of agricultural microbiomes and how to provide the 
best environment to control them. 
 
Background and Rationale 
 

With the acceleration of microbial community research, the field has produced accurate models 
and methods for designing communities to achieve the aforementioned functions [6, 7, 8], but 
the models are parameterized on microbial interactions which are treated as constant values. A 
major criticisms of microbiome research is that the test tube environment does not properly 
mimic the natural, and, therefore, the research does not commute to application. However, I 
hypothesize that the discordance originates in the interactions and growth rates because they are 
functions of setting, and I will thus see large variation in the community topology and steady 
state as the environment varies. I propose to quantify and model the microbiome in response to 
real environmental stresses, which farmers see on their plot as they exhaust resources or apply 
copious fertilizer, to expect how the research transfers to the field. 
 
It is commonly understood that microbes change their behavior in response to a lack of carbon 
by making antibiotics and other secondary metabolites [9, 10]. If we model the microbiome with 
the generalized Lotka-Volterra model [6, 7, 8], we understand the alteration in behavior, for 
example, a tendency toward aggression, can cause the stability of the community to shift. This 
can lead to dominance of pathogenic members as well as collapse of the entire community. 
However, the aggression could be beneficial for destroying a pathogen: when induced, 
Pseudomonads will make toxins that benefit the plant by killing fungal pathogens like 
Rhizoctonia solani [11], the cause of sheath leaf blight, a plant disease that is estimated to cost 
the US $22 million/year [12]. In general, frameworks for controlling the microbiome depend on 
the connections (aggressive or amiable) between the members [5], and to quantify how the 
network changes in different environments, as my proposal suggests, will elucidate the best 
context for altering a community as well as provide a method for accessing uncontrollable 
structures. 
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In the study of controlling networks, it is imperative to identify nodes, or clusters of nodes, 
which form autonomous elements and remain recalcitrant unless directly altered [5]. The number 
of autonomous elements in a microbial network implies the minimum number of driver species, 
species which are killed or boosted to control the network, that must be affected to have full 
range of the microbiome state space [5]. Hence, a more connected network or a microbiome with 
more interactions requires fewer driver species in general. Therefore, if we can identify an 
environment which maximizes the network connections, we can potentially further minimize the 
number of driver species needed to control the microbiome.  
 
Project Plan & Methods 
 

I proposed the research to Adam Arkin in the spring as an independent project and had begun 
developing the droplet and ribosomal quantification methods with the supervision of 
postdoctoral researchers in the Arkin lab. We have already isolated and classified rhizosphere 
bacteria over the past two years and have selected 150 of these which span the diversity of our 
isolate library and appear in metagenomic data that our collaborators haver garnered from 
healthy rice. In the winter, I aided in the design and production og the droplet chamber mold 
with a supervising scientist in which the droplets will be combined. I completed a trial run in 
January and troubleshot the method in the following weeks, identifying the best method for the 
experiment. The COVID pandemic interrupted the process but after validating new trial runs in 
the next couple weeks, I will then verify the quantity of cells in each droplet and validate that the 
DNA barcodes in each droplet are reported correctly. Therefore, I expect to complete the 
preparation (Phase 0) by the end of August 2020. 
 
The resource variation experiment (Phase 1) will include 5 concentrations of medium and if time 
allows, 5 concentrations of root exudate. In February, I quantified the growth rates of a sample of 
the library in order to find that the concentration of 3.1% Tryptic Soy Broth (TSB) resulted in 
growth rates similar to those reported in situ, and the range will span 2 log units. After 
completing this set of experiments and sequencing analysis (Phase 1 and Phase 2) before 
September, I will assay the interaction variance in root exudate collected in the fall from mature 
rice plants in 5 concentrations, in order to see if certain interactions and growth are selected by 
the plant.  
 
For parameterizing the model (quantifying the interaction under a certain condition), I will 
follow former lab member, Assistant Professor Ophelia Venturelli’s method which resulted in 
prediction of 12 member communities with r^2 = 0.91 [6]. The method requires sampling the 
interactions over 50 hours and parameter fitting by bayesian regression and L1 regularization of 
the timeseries data. With 150 isolates and their 11,175 total pairwise interactions, and a droplet 
generator which can make 2,000,000 droplets in one pool, I can take 7 time points and have ~25 
replicates of each time point for parameter fitting. The droplets then undergo PCR and can be 
sequenced in parallel. I will use Dr. Song’s Python program for associating the DNA barcodes 
and getting ribosomal counts. During the months of COVID, I have written my own 
parameterization code for my experiment based on the structure of Dr. Venturelli’s scripts and 
validated it on her data sets. Therefore, I expect that the droplet experiments (Phase 1) and 
modeling (Phase 2) will take 2 months and will conclude in early October. 
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We expect the droplet method has some bias; therefore, I will be completing a method identical 
to Dr. Venturelli’s for pairwise analysis of 12 members in 200 ul cultures in 96 well plates. 
While this is more tedious than the droplet method, it is paramount to quantify the biases for 
publication in a peer-review journal. I have practiced with a Biomek fluidic handling robot in the 
lab in order to streamline experimentation and increase throughput, and I will use Dr. 
Venturelli’s Biomek programs for pairwise coculture. I have selected 12 of the 150 that represent 
the rice rhizosphere and I will begin pairwise parameterization in the upcoming weeks with the 
expectation of finishing in September.  
 
I will have October and November to interpolate the interactions as functions of resource 
concentration, and then validate that communities of the organisms follow the model predicted 
dynamics at the corresponding TSB concentrations (Phase 3). Similar to pairwise coculture, this 
will entail 200 microliter cultures with approximately 3 communities in triplicate. Finally, I will 
use the parameter functions to demonstrate that the quantity of minimal drive species varies with 
resource concentration. The work should be accomplishable, but the possibility of difficulties is 
nonzero. I have outlined several goals, some of which are to be expected and others possible if 
all else succeeds without delay. The ultimate goal of the project is to publish the work in a peer-
reviewed Journal before my graduation in December 2020. 
 
In regard to the COVID19 pandemic, the research will be conducted with the utmost caution by 
abiding to the regulations set in place by the university and LBNL and is fortunately well suited 
for social distancing and remote work. The research is particularly suited for the pandemic 
because of several factors: the majority of the hands on wet lab work has already been completed 
(isolates chosen, confirmed and stored), the droplet experiments are fairly simple in preparation 
(they only require a long time on a special lab-owned machine), the validation experiment will 
be carried out by a robot, thereby minimizing human-to-human exposure, and the modeling can 
be done from my desk at home. Additionally, the machines, the droplet generator and the 
Biomek robot are kept at an Arkin lab space that is partitioned from other laboratories at Potter 
street, a less populated and open lab area. Therefore, the work will easily abide by safety 
regulations of the university and will remain so even if the restrictions become more stringent. 
 
Qualifications and Project Affiliations 
 
I am a double major in Applied Mathematics and Microbial Biology and my relevant coursework 
includes classes on ME 132 Dynamical Systems and Feedback, EE 222 Nonlinear Systems, 
E150 Modeling for Industrial Research and PMB 112 General Microbiology. I have worked in 
the Arkin lab for 2 years now, and previously worked in Jay Keasling’s lab for 18 months where 
my work resulted in four publications. While I would be working under Post Doctoral 
researchers Kyle Sander and Fangchao Song, I have pursued independent projects before: a 
colleague and I won 3rd place in the UC Berkeley Big Ideas Competition for our proposal and 
attempt to engineer polyethylene degrading bacteria.  
 
The proposed work falls under the Center for Utilization of Biological Engineering in Space 
(NASA) collaboration between UC Berkeley, Stanford, Utah State, UC Davis and University of 
Florida (NASA Grant Award Number NNX17AJ31G). The design of optimal rice communities 
is specifically a mission goal (which my project aligns with) and collaboration within CUBES 
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between the Coleman-Derr lab (UCB) and the Arkin lab, and we maintain steady communication 
with them, sharing research materials and metagenomic data. 
 
Budget 
 
The budget is outlined in the following figure. The project is fortunately limited to the expansion 
of experiments the lab plans to undergo regardless of my project, both the plate validation and 
droplet experiments, to various media. Therefore, the base supplies required for generating 
droplets, doing genome extractions, polymerized chain reactions etc. are already established, 
rather, the costs below originate from the various media types I will use along with extra plates, 
Biomek supplies and qPCR reagents which I will use extensively. 
 

Item Description Product Number Number 
Price per 
Unit Total Cost  

(NH4)2SO4 (for culture media) A4418-500G 1 $71.60 $71.60 

MgSO4·7H2O (for culture media) 230391-500G 1 $41.30 $41.30 

FeSO4·7H2O (for culture media) 215422-250G 1 $51.80 $51.80 

MnSO4 (for culture media) M7634-100G 1 $59.30 $59.30 

K2HPO4 (for culture media) P3786-100G 1 $48.30 $48.30 
Biomek® 2000 P250 Tips, with Barrier, 960 
case BK140505 1 $324.77 $324.77 

Half Reservoir, 24 case BK372786 1 $145.09 $145.09 

Quantitative RT-PCR ReadyMix™, 200 rxns QR0200-1KT 1 $417.00 $417 

100 pack of 96-Well plates, clear, sterile 
CLS9018BC-
100EA 1 $520.00 $520.00 

tax    7.00% 

shipping    10.00% 

   Project Total:  $1,976.37 
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