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Abstract—In this work, we extend recent advances that connect
Hamilton-Jacobi (HJ) equations with RL to propose two novel
value functions for dual-objective satisfaction. Namely, we address:
(1) the Reach-Always-Avoid problem – of achieving distinct reward
and penalty thresholds – and (2) the Reach-Reach problem – of
achieving thresholds of two distinct rewards. In contrast with
constrained Markov processes or temporal logic approaches,
we are able to derive explicit, tractable Bellman forms in this
context by decomposing the problems into reach, avoid, and
reach-avoid problems to leverage the recent advances. Moreover,
we leverage our analysis to propose a variation of Proximal
Policy Optimization, dubbed (DO-HJ-PPO), to solve this class
of problems and demonstrate that it bests other baselines in
multiple safe-arrival and multi-target achievement, providing a
new perspective on constrained decision-making.

I. RELATED WORKS

Many in learning and autonomy have considered balancing
safety and liveness. A few particularly relevant topics are
mentioned here. Constrained Markov Decision Processes
(CMDPs) are a popular approach to transform constraints
into a Lagrangian [1, 2, 3, 4, 5], however, this often requires
intricate reward engineering and parameter tuning to balance
the combined objective. Similarly, Multi-Objective RL solves
the pareto optimal solution of vector-valued rewards but is
not focused on priority-scalarized problems [6, 7, 8]. Goal-
Conditioned RL [9, 10, 11] and Linear/Signal Temporal Logic
RL [12, 13, 14, 15, 16, 17] generally learn to solve multiple
tasks at once, by augmenting the problem to a surrogate
problem or automaton, but this is notoriously a challenging
approach and there are often no guarantees for the relation
between the surrogate and original problem. In this work we
are able to derive explicit forms for dual-objective Bellman
equations that yield the optimal policy by augmenting the
state. This lends to direct approaches for learning the dual-
objective values, which proves to yield improved performance.
To do this, we build on traditional dynamic-programming
methods that solve Hamilton-Jacobi-Bellman (HJB) equations,
and specifically those that connect HJB and RL theories
[18, 19, 20, 21].

II. PROBLEM DEFINITION

Consider a Markov decision process (MDP) M = ⟨S,A, f⟩
consisting of finite state and action spaces S and A, and
unknown discrete dynamics f that define the deterministic
transition st+1 = f(st, at). Let an agent interact with the
MDP by selecting an action with policy π : S → A to yield a
state trajectory sπt , i.e. sπt+1 = f (sπt , π (sπt )) .

Fig. 1: DDQN Demonstration of the RAA & RR Problems We
compare our novel formulations with previous HJ-RL formulations
(RA & R) in a simple grid-world problem with Double-Deep Q
Learning. The hazards are highlighted in red, the goal in blue, and
trajectories in black (starting at the dot). In both models, the agents
actions are limited to left and right or straight and the system flows
upwards over time.

In this work, we consider the Reach-Always-Avoid (RAA)
and Reach-Reach (RR) problems, which both involve the
composition of two objectives, which are each specified in
terms of the best reward and worst penalty encountered over
time. In the RAA problem, let r, p : S → R represent a reward
to be maximized and a penalty to be minimized. We will let
q = −p for mathematical convenience, but for conceptual ease
we recommend the reader think of trying to minimize the
largest-over-time penalty p rather than maximize the smallest-
over-time q. In the RR problem, let r1, r2 : S → R be two
distinct rewards to be maximized. The agent’s overall objective
is to maximize the worst-case outcome between the best-over-
time reward and worst-over-time penalty (in RAA) and the
two best-over-time rewards (in RR), i.e.

(RAA)

 maximize min
{
maxt r(s

π
t ), mint q(s

π
t )
}

s.t. sπt+1 = f (sπt , π (sπt )) ,
sπ0 = s,

(RR)
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π
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π
t )
}

s.t. sπt+1 = f (sπt , π (sπt )) ,
sπ0 = s.

As the problem names suggest, these optimization problems are
inspired by (but not limited to) tasks involving goal reaching
and hazard avoidance. While these problems are thematically
distinct, they are mathematically complementary, and hence
we tackle them together.

The values for any policy in these problems then take the
forms V π

RAA and V π
RR,
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.

One may observe that these values are fundamentally different
from the infinite-sum value commonly employed in RL [22],



and do not accrue over the trajectory but, rather, are determined
by certain points. Moreover, while each return considers two
objectives, these objectives are combined in worst-case fashion
to ensure dual-satisfaction.

III. REACHABILITY AND AVOIDABILITY IN RL
Prior works [18, 19] study the reach V π

R , avoid V π
A , and

reach-avoid V π
RA values, respectively defined by

V π
R (s) = max

t
r(sπt ),

V π
A (s) = min

t
q(sπt ),

V π
RA(s) = max

t
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q(sπτ )

}
,

resulting in the derivation of special Bellman equations [18].
To put these value functions in context, assume the goal G is
the set of states for which r(s) is positive and the hazard H
is the set of states for which q(s) is non-positive. Then V π

R ,
V π

A , and V π
RA are positive if and only if π causes the agent

to eventually reach G, to always avoid H, and to reach G
without hitting H prior to the reach time, respectively. The
Reach-Avoid Bellman Equation (RABE), for example, takes
the form [19]

V ∗
RA(s) = min

{
max

{
max
a∈A

V ∗
RA (f(s, a)) , r(s)

}
, q(s)

}
,

and is associated with optimal policy π∗
RA(s) (without the need

for state augmentation, see Section A in the Supplementary
Material). This formulation does not naturally induce a contrac-
tion, but may be discounted to induce contraction by defining
V γ

RA(z) implicitly via

V γ
RA(s) = (1− γ)min{r(s), q(s)} +

γmin

{
max

{
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a∈A

V γ
RA (f(s, a)) , r(s)

}
, q(s)

}
,

for each γ ∈ [0, 1), as in [19].
These prior value functions and corresponding Bellman equa-

tions have proven powerful for these simple reach/avoid/reach-
avoid problem formulations. In this work, we generalize the
these results to the aforementioned broader class of problems.

IV. THE NEED FOR AUGMENTING STATES

The value functions we introduce may appear similar to
the simpler HJ-RL value functions discussed in the previous
section; however, in these new formulations the goal of
choosing a policy π : S → A is inherently flawed without
state augmentation. In considering multiple objectives over an
infinite horizon, situations arise in which the optimal action
depends on more than the current state, but rather the history
the trajectory. An example clarifying the issue is shown in
Figure 2.

To allow the agent to use relevant aspects of its history, we
will henceforth consider an augmentation of the MDP with
auxiliary variables. A theoretical result in the next section
states that this choice of augmentation is sufficient in that no
additional information will be able to improve performance
under the optimal policy.

Fig. 2: Examples where a Non-Augmented Policy is Flawed In both
MDPs, consider an agent with no memory. (Left) For a deterministic
policy based on the current state, the agent can only achieve one target
(RR), as the policy must associate the middle state with either of
the two possible actions. (Right) In the RAA case, assume the robot
must avoid the fire at all costs and would prefer to not encounter the
peel, but will do so if needed. The optimal decision for the current
state depends on state history, specifically on whether the robot has
already reached the target state or not.

A. Augmentations

For the RAA problem, we consider an augmentation of the
MDP defined by M = ⟨S,A, f⟩ consisting of augmented
states S = S ×Y ×Z and the same actions A. For any initial
state s, let the augmented states be initialized as y = r(s) and
z = q(s), and let the transition of M be defined by

sπ̄t+1 = f
(
sπ̄t , π̄

(
sπ̄t , y

π̄
t , z

π̄
t

))
,
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(
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)
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}
,
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q
(
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)
, zπ̄t

}
,

such that yt and zt track the best reward and worst penalty up
to any point. Hence, the policy for M given by π̄ : S → A
may now consider information regarding the history of the
trajectory.

For the RR problem, we augment the system similarly, except
that zt is updated using a max operation instead of a min:

sπ̄t+1 = f
(
sπ̄t , π̄

(
sπ̄t , y

π̄
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,
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)
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}
.

V. OPTIMAL POLICIES FOR RAA AND RR BY VALUE
DECOMPOSITION

We now discuss our first theoretical contributions. We refer
the reader to the supplementary material for the proofs of the
theorems.

A. Decomposition of RAA into avoid and reach-avoid problems

Our main theoretical result for the RAA problem shows that
we can solve this problem by first solving the avoid problem
corresponding to the penalty q(s) to obtain the optimal value
function V ∗

A (s) and then solving a reach-avoid problem with the
negated penalty function q(s) and a modified reward function
rRAA(s).

Theorem 1. For all initial states s ∈ S,

max
π̄

V π̄
RAA(s) = max

π
max

t
min

{
rRAA (sπt ) ,max

τ≤t
q (sπτ )

}
,

(1)
where rRAA(s) := min {r(s), V ∗

A (s)}, with

V ∗
A (s) := max

π
min
t

q (sπt ) .



Corollary 1. The value function V ∗
RAA(s) := maxπ̄ V

π̄
RAA(s)

satisfies the Bellman equation

V ∗
RAA (s) = min

{
max

{
max
a∈A

V ∗
RAA (f(s, a)) , rRAA(s)

}
, q(s)

}
.

B. Decomposition of the RR problem into three reach problems

Our main result for the RR problem shows that we can solve
this problem by first solving two reach problems corresponding
to the rewards r1(s) and r2(s) to obtain reach value functions
V ∗

R1(s) and V ∗
R2(s), respectively. We then solve a third reach

problem with a modified reward rRR(s).

Theorem 2. For all initial states s ∈ S,

max
π̄

V π̄
RAA(s) = max

π
max

t
rRR (sπt ) , (2)

where

rRR(s) := min {max {r1(s), V ∗
R2(s)} ,max {r2(s), V ∗

R1(s)}} ,

with

V ∗
R1(s) := max

π
max

t
r1 (s

π
t ) , V ∗

R2(s) := max
π

max
t

r2 (s
π
t ) .

Corollary 2. The value function V ∗
RR(s) := maxπ̄ V

π̄
RR(s)

satisfies the Bellman equation

V ∗
RR (s) = max

{
max
a∈A

V ∗
RR (f(s, a)) , rRR(s)

}
.

C. Optimality of the augmented problems

The following theoretical result demonstrates that the aug-
mentation is optimal for the original problem with no other
information needed.

Theorem 3. Let s ∈ S. Then

max
π

V π
RAA(s) ≤ max

π̄
V π̄

RAA(s)

= max
a0,a1,...

min
{
max

t
r(st),min

t
q(st)

}
,

and

max
π

V π
RR(s) ≤ max

π̄
V π̄

RR(s)

= max
a0,a1,...

min
{
max

t
r1(st),max

t
r2(st)

}
where st+1 = f(st, at) and s0 = s.

VI. DO-HJ-PPO: SOLVING RAA AND RR WITH RL

In the previous sections, we demonstrated that the RAA and
RR problems can be solved through decomposition of the values
into formulations amenable to existing RL methods. However,
we make a few assumptions in the derivation that would limit
performance and generalization, namely, the determinism of the
values as well as access to the decomposed values (by solving
them beforehand). In this section, we propose relaxations to the
RR and RAA theory and devise a custom variant of Proximal
Policy Optimization, DO-HJ-PPO, to solve this broader class
of problems, and demonstrate its performance.

A. Stochastic Reach-Avoid Bellman Equation

It is well known that the most performative RL methods allow
for stochastic learning. In [21], the Stochastic Reachability
Bellman Equation (SRBE) is described for Reach problems and
used to design a specialized PPO algorithm. In this section we
proceed by closely following this work, modifying the SRBE
into a Stochastic Reach-Avoid Bellman Equation (SRABE).
Using Theorems 1 and 2, the SRBE and SRABE offer the
necessary tools for designing a PPO variant for solving the
RR and RAA problems.

We define Ṽ π
RAA to be the solution to the following Bellman

equation (SRABE):

Ṽ π
RAA(s) =

Ea∼π

[
min

{
max

{
Ṽ π

RAA (f(s, a)) , rRAA(s)
}
, q(s)

}]
The corresponding action-value function is

Q̃π
RAA(s, a) = min

{
max

{
Ṽ π

RAA (f(s, a)) , rRAA(s)
}
, q(s)

}
.

We define a modification of the dynamics f involving an
absorbing state s∞ as follows:

f ′(s, a) =

{
f(s, a) q (f(s, a)) < Ṽ π

RAA(s) < rRAA (f(s, a)) ,

s∞ otherwise.

We then have the following proposition:

Proposition 1. For each s ∈ S and every θ ∈ Rnp , we have

∇θṼ
πθ

RAA(s) ∝ Es′∼d′
π(s),a∼πθ

[
Q̃πθ

RAA(s
′, a)∇θ lnπθ(a|s′)

]
,

where d′π(s) is the stationary distribution of the Markov Chain
with transition function

P (s′|s) =
∑
a∈A

π(a|s) [f ′(s, π(a|s)) = s′] ,

with the bracketed term equal to 1 if the proposition inside is
true and 0 otherwise.

Following [19], we then define the discounted value and
action-value functions with γ ∈ [0, 1):

Ṽ γ,π
RAA(s) = (1− γ)min {rRAA(s), q(s)}

+ γEa∼π

[
min

{
max

{
Ṽ γ,π

RAA (f(s, a)) , rRAA(s)
}
, q(s)

}]
,

Q̃γ,π
RAA(s, a) = (1− γ)min {rRAA(s), q(s)}

+ γmin
{
max

{
Ṽ γ,π

RAA (f(s, a)) , rRAA(s)
}
, q(s)

}
.

The PPO advantage function is then given by Ãπ
RAA =

Q̃RAA − ṼRAA [23].

B. Algorithm

We introduce DO-HJ-PPO in Algorithm 1, a unified PPO-
based algorithm for solving the Reach-Always-Avoid (RAA)
and Reach-Reach (RR) problems, which builds on the SRABE
and SRBE formulations with minimal modifications to the
standard PPO framework.



Fig. 3: Algorithm Comparisons for RR and RAA tasks. We evaluate our method and relevant baselines on 1,000 trajectories for both the
Reach-Reach (RR) and Reach-Always-Avoid (RAA) problems for Hopper and F16 environments. In the RR tasks, we compare against a
decomposed version of the problem (DSTL) and several variants of CPPO. Our method consistently reaches both target regions with a higher
success rate and fewer steps on average. Notably, CPPOv1 and CPPOv2 fail to achieve any successful trajectories in the RR task, whereas
CPPOv3 shows improved—but still limited—performance. For the RAA tasks, we compare our approach against Constrained PPO (CPPO)
and standard reach-avoid baselines. Our method achieves a higher success rate while requiring a lower average number of steps to reach
success.

Algorithm 1 : DO-HJ-PPO (Actor-Critic)

Require: Composed and Decomposed Actor parameters θ and
θi, Composed and Decomposed Critic parameters ω and
ωi, GAE λ, learning rate βk and discount factor γ. Let Bγ

amd Bγ
i represent the Bellman update and decomposed

Bellman update for the users choice of problem.
1: Define Composed Actor and Critic Q̃
2: Define Decomposed Actor(s) and Critic(s) Q̃i

3: for k = 0, 1, . . . do
4: for t = 0 to T − 1 do
5: Sample trajectories for τt : {ŝt, at, ŝt+1}
6: Define r̃(st) with Decomposed Critics Q̃i(st) (The-

orems 1 & 2)
7: Composed Critic update:

ω ← ω − βk∇ωQ̃(τt) ·
(
Q̃(τt)−Bγ [Q̃; r̃](τt)

)
8: Compute Bellman-GAE Aλ

HJ with Bγ

9: (Standard) update Composed Actor
10: Decomposed Critic update(s):

ω ← ω − βk∇ωQ̃i(τt) ·
(
Q̃i(τt)−Bγ

i [Q̃i](τt)
)

11: Compute Bellman-GAE Aλ
i with Bγ

i

12: (Standard) update Decomposed Actor(s)
13: end for
14: end for
15: return parameter θ, ω

In Algorithm 1, the Bellman update Bγ [Q̃, r̃] differs for the
RAA task and RR task, and the Bγ

i [Q̃] differs between the
reach, avoid, and reach-avoid tasks. These Bellman updates
are explicitly specified in the Supplementary Material.

VII. EXPERIMENTS

We first demonstrate the theoretical results (Theorems 1 and
2) through a simple 2D grid-world experiment using Double
Deep Q-Networks (DDQN) (Figure 1). Additional experimental
details are provided in the Supplementary Material. On the
left, we compare the optimal value functions learned under the
classic RA formulation with those from the RAA setting. In
the RA scenario, trajectories successfully avoid the obstacle

but may terminate in regions from which future collisions are
inevitable. On the right, we consider a similar environment
but with two reward targets. Here, the RR formulation induces
trajectories that visit both targets, unlike simple R tasks in
which the agent halts. These qualitative results highlight the
behavioral distinctions induced by the RAA and RR objectives
compared to their simpler counterparts.

To evaluate the method under more complex and less
structured conditions, we extend our analysis to continuous
control settings using our algorithm DO-HJ-PPO. Specifically,
we apply DO-HJ-PPO to RAA and RR tasks in the Hopper
and F16 environments. For the Hopper, two high targets and
floor and wall obstacles are defined with respect to its head,
and in the F16, the targets are defined by regions to fly
through, while obstacles are defined by geofences which create
a boxed flight corridor. We compare against both STL (DSTL)
and contrained PPO (CPPO) baselines (see supplementary
material). Empirically, DO-HJ-PPO performs equivalently at
worst and more often at a significantly higher ability, scored in
metrics of task success percentage and steps to achieve the task,
indicating that DO-HJ-PPO more reliably and rapidly solves
the given tasks. These results underscore the challenging nature
of composing multiple objectives using traditional baselines
while in contrast, our method provides a more robust and direct
solution for handling such complex compositional tasks, with
less required tuning.

VIII. CONCLUSION

In this brief, we introduced two novel Bellman formulations
for new problems (RAA and RR) which generalize those in
recent publications. We prove decomposition results for these
problems that allow us to break them into simpler Bellman
problems, which can then be composed to obtain the value
functions and corresponding optimal policies. We use these
results to design a PPO-based algorithm for practical solution
of RAA and RR. More broadly, this work provides a road-
map to extend the range of Bellman formulations that can
be solved, via decomposing higher-level problems into lower-
level ones, reminiscent of work in the LTL community for
solving NMRDPs. By solving the RAA and RR, we add two
new ingredients to the list of solvable problems that can be
leveraged toward this end.
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