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We will use the Indirect Method of Lyapunov (citation) to obtain a radius of con-
vergence (ROC) for a given equilibrium of the generalized Lotka Volterra system (gLV).
Note, this is a systematic method but it does not in general obtain the maximum ROC.

1 The Natural System

The gLV system of size n is defined as

ẋi = xi

(
ri +

n∑
j=1

αijxj

)
i ∈ [1, n] (1.1)

such that ri is the intrinsic growth rate of population xi and αij is the ”interaction from
xj to xi”, the effect that xj has on the growth of xi. The system can be summarized,

ẋ = x ◦ (r + Ax) x, r ∈ Rn A ∈ Rn×n (1.2)

with ◦ defined as the Hadamard or element wise product (citation). This nonlinear
system can be rearranged to partition the linear and nonlinear factors

ẋ = Jx+ g(x)

for J := Df(x) |x=0, the Jacobian evaluated at the origin, and g(x) := the remaining
nonlinearities. Thus,

J =

∣∣∣∣∣∣∣∣∣
r1 0 · · · 0

0 r2
...

...
. . . 0

0 · · · 0 rn

∣∣∣∣∣∣∣∣∣ and, g(x) = (A ◦Xr)x for Xr :=

∣∣∣∣∣∣∣
x1 · · · x1
...

...
xn · · · xn

∣∣∣∣∣∣∣ (1.3)

2 Lyapunov Analysis of the Natural System

We use the standard, quadratic Lyapunov function to interrogate the stability of the
origin. However, this case is irrelevant itself because the trivial equilibrium of a gLV
system is never stable (note, the eigenvalues of J are the growth rates r which are
positive by definition), rather, it is derived to understand the translated system.
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Let V be the standard, quadratic Lyapunov function,

V (x) := xTPx where P solves JTP + PJ = −I (2.1)

Truly, there will be no positive, symmetric matrix P which can solve this because of the
nature of J; it is only when we shift the equilibrium to a nontrivial fixed point does it
become possible. Pretending for now,

V̇ (x) = −xTx+ 2xTPg(x) = −xT (1− 2P (A ◦Xr))x

and
V̇ (x) ≤ −(1− 2 ‖P‖i,2 ‖A ◦Xr‖i,2) ‖x‖

2
2 (2.2)

Well,
‖A ◦Xr‖i,2 ≤ ‖A ◦Xr‖F ≤ ‖A‖F ‖Xr‖F = ‖A‖F

√
n ‖x‖2

Therefore, we can conclude the local region where −V̇ (x) is positive definite,

‖x‖2 < r :=
1

2
√
n ‖P‖i,2 ‖A‖F

=⇒ 1− 2 ‖P‖i,2 ‖A ◦Xr‖i,2 > 0 =⇒ −V̇ (x) LPDF

and if,
x ∈ Ω : {x̄ | V (x̄) < λmin(P )r2} (2.3)

then,
λmin(P ) ‖x‖2 < V (x) = xTPx ≤ λmin(P )r2 =⇒ ‖x‖ < r

guarantees that the trajectories will remain within a region where −V̇ (x) is LPDF.
Ofcourse, the Lyapunov Theorem for Time Invariant System dictates that this is the
region where trajectories will converge to the origin asymptotically.

3 Translation to Equilibria of Interest

Let f = (f1...fn) be a stable (non-trivial) equilibrium of the natural system for which we
desire to know the radius of convergence. We can use the following change of variables
to derive a system with this equilibrium at the origin,

z = x− f ⇐⇒ z + f = x =⇒ ż = ẋ =⇒ ż = (z + f) ◦ (r + A(z + f)) (3.1)

which can first be simplified using the properties of the Hadamard operator,

ż = z ◦ (r + Az) + f ◦ (r + Az) + (z + f) ◦ (Af)

Recall, the nontrivial equilibrium f = −A−1(r) =⇒ Af = −r, allowing,

ż = z ◦ (r + Az) + f ◦ (r + Az) + z ◦ (−r) + f ◦ (−r)
ż = (f ◦ A)z + (z ◦ A)z = J ′z + g(z) (3.2)

The eigenvalues of J ′ are potentially negative, thus, we know that there exists a Pz

such that,
J ′TPz + PzJ

′ = −I holds for V (z) = zTPzz,

therefore, our Lyapunov analysis will hold for this system which has the same nonlinear
piece g(z).

Hence, the region of convergence for this equilibrium is given by the set,

z ∈ Ωz : {z̄ | V (z̄) < λmin(Pz)r
2
z} for rz =

1

2
√
n ‖Pz‖i,2 ‖A‖F

(3.3)


